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Abstract
In this paper, we generalize the finite-U slave-boson mean-field theory, provided
by Kotliar and Ruckenstein (Kotliar G and Ruckenstein A E 1986 Phys.
Rev. Lett. 57 1362), to investigate the Kondo correlation effects on linear
and non-linear transport in a quantum dot connected to reservoirs at zero
temperature. A comparison between the present formulation and other slave-
boson formulations shows that this approach provides a more precise description
of Kondo-type transport through quantum dots. In addition, this approach
naturally fulfils the Friedel–Langreth sum rule exactly. The numerical results
for the linear conductance at zero temperature agree well with experimental data
and the numerical renormalization group calculations. The zero-temperature
non-linear differential conductance is also discussed for Kondo and non-Kondo
systems. A pronounced zero-bias maximum in the Kondo regime and flat zero-
bias minimum in the non-Kondo regime are predicted for the zero-temperature
differential conductance.

1. Introduction

Recently, due to the rapid development in nanoelectronics, the Kondo effect, which has been
studied for magnetic impurity in a metallic host for many years [1], has led to considerable
interest in mesoscopic systems. A series of subtly devised experiments made it possible
to probe many different regimes of the Kondo effects in semiconductor quantum dot (QD)
systems under adjustable conditions [2–9]. So far, the main features of the Kondo effect that
have been explored for the quantum dot are Kondo-assisted enhancement of conductance, its
specific temperature dependence, a peak splitting in a magnetic field, the zero-bias maximum
in the differential conductance in the Kondo regime, and the integer-spin Kondo effect. These
effects in QD were successfully proposed in early theoretical work [10–16], which described
the electron transport through QD using the well-known impurity Anderson model [17]. This
age-old model has been extensively studied for more than thirty years and many numerical and
analytical methods have been developed to explore its equilibrium physical properties, such
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as the Bethe-ansatz method [18], the equation-of-motion (EOM) method [19], the second-
order perturbation theory (SOPT) for Coulomb interaction U in QD [20], the slave-boson
non-crossing approximation (NCA), [21], and the numerical renormalization group (NRG)
method [22].

However, the Bethe-ansatz and NRG methods cannot be used to study non-linear transport
phenomena. Meir et al [11] used the EOM method early on to investigate the properties of
linear and non-linear transport through QD. Due to the decoupling approximation employed by
them, this treatment breaks down at low temperatures because of underestimation of the Kondo
correlations. The SOPT has been applied by Hershfield et al to explore the Kondo resonance in
the finite-U Anderson model out of equilibrium [10], which has been confirmed to be reliable
for the symmetric case (2εd + U = 0, εd being the QD energy level), but fails for asymmetric
systems owing to the deviation from the current-conservation and Friedel sum rules. Therefore,
a modified SOPT was developed in order to overcome this shortcoming [15, 16]. Craco and
Kang [16] employed this modified SOPT to study the transport through QD for the Kondo and
non-Kondo regimes in non-equilibrium conditions. They found a zero-bias maximum in the
differential conductance for the Kondo system due to the Kondo resonance effect, but a weak
zero-bias minimum for the non-Kondo system. Although this approach achieves numerical
success in the proper description of the linear and non-linear transport through QD over a
wider range of parameters and approximately fulfils the Friedel sum rule, it is evident that
it employs an equilibrium density of states (DOS) to study transport properties, which are
non-equilibrium phenomena. Consequently, this approach may not predict the splitting of the
Kondo-enhanced DOS at the Fermi energy under a finite voltage bias between the left and
right leads, in contrast with the quantitative calculation of the EOM in combination with the
NCA in the limit of infinite Coulomb interaction U → ∞ [12,14]. The NCA provides a good
description for the investigation of the excitation spectra for QD based on Coleman’s slave-
boson formulation (Coleman’s formulation) [23], but the necessary Fermi liquid behaviour
is not reproduced at the low-energy and low-temperature limit. Recently, a slave-boson
mean-field theory (SBMFT) has been presented for studying transport through tunnelling-
coupled double quantum dots under the same assumption—that the Coulomb interaction
U → ∞ [24,25]—for which Coleman’s formulation was applied [23]. This scheme transforms
the strong-correlation Hamiltonian to an equivalent non-interacting one by introducing several
auxiliary boson operators just as the NCA does. It evades the dilemma of how both the Coulomb
interaction U and the mixing between the QD and the two leads can be simultaneously treated
in deriving the self-energy of the QD. Subsequently, this simple and effective scheme was
extended to investigate the Kondo-related transport in hybrid mesoscopic structures, such as
normal-metal–QD–superconductor (N–QD–S) [26] and superconductor–QD–superconductor
(S–QD–S) systems [27]. All of these investigations have concentrated on the limit of U → ∞.
However, the experiments on transport through QD show that the Coulomb interaction U

is finite. Therefore, further investigation of the non-equilibrium finite-U Anderson model
is necessary.

More recently, a new SBMFT has been developed to investigate transport through QD with
arbitrary strength of the Coulomb interaction under the influence of magnetic fields [28]. This
scheme is an extension of the saddle-point approximation to the auxiliary-boson functional
integral method for the Anderson models, suggested by Kotliar and Ruckenstein [29] (the
KR formulation), to non-equilibrium situations. It has been confirmed that this formulation’s
simple saddle-point approximation for all Bose fields and Lagrange multipliers introduced
is, at zero temperature, equivalent to the results derived from the Gutzwiller variational
wave function [29], the well-known analytical approach used for studying strongly correlated
fermions. This approach has been applied extremely extensively in the literature and is believed
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to be a powerful non-perturbative tool for studying strongly correlated fermion systems [30].
To our knowledge, it is the first time that this powerful method has been applied to explore
coherent transport through a single Anderson impurity. The purpose of the present paper is to
apply this finite-U approach to investigate the linear and non-linear transport through QD.

The remaining parts of the paper are arranged as follows. The detailed formulation will be
presented in the second section. In the wide-band limit, we can obtain the linear conductanceG

of QD, which has the same form as the well-known Breit–Wigner formula, but with the effective
energy level and coupling constant instead. Of course, the Friedel sum rule is naturally satisfied
within the SBMFT framework. The slave-boson formulation given by us is evidently different
from the usual finite-U slave-boson formulation [31], which has been extensively utilized
within the diagrammatic NCA. The third section gives a comparison of our KR formulation, in
detail, with other finite-U slave-boson formulations at the slave-boson mean-field level, which
indicates that our formulation provides a more precise description of the Kondo effects in QD
at zero temperature. On the basis of our approach, a numerical investigation and discussion
are given for the Kondo effects on linear and non-linear transport through QD in the next
section. In the linear case, the conductance G is evaluated and shows good consistency with
the experimental data and NRG calculations. Finally, our conclusions are given in section 5.

2. The finite-U slave-boson mean-field approach

Transport through a QD connected to the leads in the presence of an external bias voltage can
be described by the Anderson single-impurity model:

H =
∑
σ,kα

εkα,σ c
†
kα,σ

ckα,σ +
∑
σ

εdσ c
†
d,σ cd,σ + Und,↑nd,↓ +

∑
σ,kα

(Vαc
†
kα,σ

cd,σ + H.c.) (1)

where εkα,σ represents the conduction electron energy and c
†
kα,σ

(ckα,σ ) are the creation
(annihilation) operators for electrons in the lead α (=L,R). When an external voltage V

is applied between the two leads, their chemical potential difference is µL − µR = eV . The
two leads are assumed to be in local equilibrium and their distribution functions are given by
the Fermi distribution functions fα(ω) = [1 + exp (ω − µα)/kBT ]−1 (α = L or R). εdσ are
the discrete energy levels in the QD and only considering the lowest energy level in this model
is proven reliable for the present experimental technique. Owing to spin degeneracy, we have
εd↑ = εd↓ = εd . The other parameters U and Vα stand for the Coulomb interaction and the
coupling between the QD and the reservoirs, respectively. According to the KR slave-boson
representation [29], four auxiliary Bose fields e, pσ (σ = ±1), and d have been introduced,
which act as projection operators respectively onto the empty, singly occupied (with spin up
and down), and doubly occupied electronic states of the QD. In order to eliminate additional
unphysical states, three constraints have to be imposed on these bosons:∑

σ

p†
σpσ + e†e + d†d = 1 (2)

c
†
d,σ cd,σ = p†

σpσ + d†d σ = ±1. (3)

Equations (2) and (3) are the complete relation and the charge-conservation condition,
respectively. In the physical subspace defined by these constraints, the fermion operators
c

†
dσ and cdσ for the QD are replaced by

z†
σ c

†
d,σ cd,σ zσ (4)

so the matrix elements are the same in the combined fermion–boson Hilbert space as those in
the original one, equation (1). Here

zσ = (1 − d†d − p†
σpσ )

−1/2(e†pσ + p
†
σ̄ d)(1 − e†e − p

†
σ̄ pσ̄ )

−1/2. (5)
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Therefore, the Hamiltonian (1) can be replaced by the following effective Hamiltonian in terms
of auxiliary boson operators:

Heff =
∑
σ,kα

εkα,σ c
†
kα,σ

ckα,σ +
∑
σ

εdσ c
†
d,σ cd,σ + Ud†d +

∑
σ,kα

(Vαc
†
kα,σ

cd,σ zσ + H.c.)

+ λ(1)

(∑
σ

p†
σpσ + e†e + d†d − 1

)
+

∑
σ

λ(2)
σ (c

†
d,σ cd,σ − p†

σpσ − d†d). (6)

The constraints are incorporated via the three Lagrange multipliers, λ(1) and λ(2)
σ . Under the

framework of the SBMFT, the four slave Bose fields can be assumed as c-numbers and replaced
by their corresponding expectation values.

In order to determine these unknown parameters, we start from the constraints (2), (3) and
deduce the equation of motion of the slave-boson operators from the Hamiltonian (6), yielding
the following equations within the SBMFT [25, 28]:∑
σ

|pσ |2 + |e|2 + |d|2 = 1 (7)

|pσ |2 + |d|2 − 〈c†
d,σ cd,σ 〉 = 0 σ = ±1 (8)

∑
kα,σ

Vα

(
∂zσ

∂e
〈c†

kα,σ
cd,σ 〉 +

∂z†
σ

∂e
〈c†

d,σ ckα,σ 〉
)

+ λ(1)e = 0 (9)

∑
kα

Vα

(
∂zσ

∂pσ

〈c†
kα,σ

cd,σ 〉 +
∂z†

σ

∂pσ

〈c†
d,σ ckα,σ 〉

)
+ (λ(1) − λ(2)

σ )pσ = 0 (10)

∑
kα,σ

Vα

(
∂zσ

∂d
〈c†

kα,σ
cd,σ 〉 +

∂z†
σ

∂d
〈c†

d,σ ckα,σ 〉
)

+

(
U + λ(1) −

∑
σ

λ(2)
σ

)
d = 0. (11)

In these equations, calculations of statistical expectations can be expressed in terms of the
Fourier transforms of the non-equilibrium correlation Green functions (GFs):

G<
dσ,kασ

(t, t ′) ≡ i〈c†
kα,σ

(t ′)cd,σ (t)〉 G<
kασ,dσ

(t, t ′) ≡ i〈c†
d,σ (t

′)ckα,σ (t)〉.
With the effective Hamiltonian (6), these correlation GFs can be readily related to the Fourier
transforms of the retarded (advanced) GF:

G
r (a)
dσ (t, t ′) ≡ ±iθ(±t ∓ t ′)〈{cd,σ (t), c†

d,σ (t
′)}〉

and the correlation GF:

G<
dσ (t, t

′) ≡ i〈c†
d,σ (t

′)cd,σ (t)〉
for the QD by applying the Langreth analytic continuation rules [32]. Finally, these equations
(7)–(11) can be closed in terms of the QD’s correlation GF G<

dσ in Fourier space:

1

2π i

∫
dω G<

dσ (ω) = |pσ |2 + |d|2 (12)

1

2π i

∑
σ

∂ ln zσ

∂e

∫
dω G<

dσ (ω)(ω − ε̃dσ ) + 2λ(1)e = 0 (13)

1

2π i

∑
σ ′

(
∂ ln zσ ′

∂p
†
σ

+
∂ ln zσ ′

∂pσ

) ∫
dω G<

dσ ′(ω)(ω − ε̃dσ ′) + 2(λ(1) − λ(2)
σ )pσ = 0 (14)

1

2π i

∑
σ

∂ ln zσ

∂d

∫
dω G<

dσ (ω)(ω − ε̃dσ ) + 2

(
U + λ(1) −

∑
σ

λ(2)
σ

)
d = 0. (15)
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It is clear that for the effective Hamiltonian (6) the retarded (advanced) and correlation GFs
G

r,a,<
dσ (ω) can be written as

G
r (a)
dσ (ω) = 1

ω − ε̃dσ ± i"̃
(16)

G<
dσ (ω) = i"̃[fL(ω) + fR(ω)]

(ω − ε̃dσ )2 + "̃2
(17)

which are formally the same as those for non-interacting electrons, except with the effective
energy level ε̃dσ = εdσ +λ(2)

σ and the effective coupling constant "̃ = ("L +"R)|zσ |2/2 (where
"α = 2π

∑
kα

|Vα|2δ(ω − εkα,σ ) is the strength of coupling between the QD level and the lead
α). Therefore, these equations (7) and (12)–(15) together with the definition of the correlation
GF, equation (17), form a closed self-consistent set of equations, which can define the seven
parameters, and thus describe linear and non-linear transport through QD under finite external
voltage bias.

According to the treatment of reference [33], we can write the current per spin Iσ between
the QD and the lead α as

I =
∑
σ

Iσ = 2e

h̄

∑
σ

∫
dω "′|zσ |2 {fL(ω) − fR(ω)} ρσ (ω) (18)

where "′ = "L"R/("L + "R). In the present paper, we focus our attention on the symmetric
systems with "L = "R = ". In the wide-band limit of the reservoirs, the coupling strength
" can be taken as a constant and it is chosen as the energy unit throughout the paper.
ρσ = −(1/π) Im Gr

dσ (ω) is the spectral DOS of the electron in the QD. Utilizing equation
(18), the linear conductance Gσ for electrons with spin σ in the limit of zero bias voltage can
be obtained:

Gσ = dIσ
dV

∣∣∣∣
V=0

= e2

h

1

(ε̃dσ /"̃)2 + 1
(19)

at absolute zero temperature. The total conductance G is G = ∑
σ Gσ . Clearly, the conduct-

anceGσ has the same form as the Breit–Wigner formula for non-interacting electron tunnelling.
The Coulomb correlation is reflected only through the effective energy level and coupling
constant within the present theoretical framework. Consequently, it is evident that transport
through QD can be fully characterized by the seven factitiously introduced parameters e, pσ ,
d, λ(1), and λ(2)

σ under the SBMFT.
It is worth noting that equation (12) gives the occupation number of electrons per spin in

the QD: nσ = |pσ |2 + |d|2. In the linear case, we can easily deduce the following formula:

nσ = 1

2
− 1

π
arctan

(
ε̃dσ

"̃

)
(20)

at zero temperature. Explicitly, the SBMFT perfectly satisfies the famous Friedel–Langreth
sum rule [34]:

Gσ = e2

h
sin2(πnσ ). (21)

Note that such agreement could not be yielded by the EOM method and the NCA. In the linear
limit the transmission tdσ = −Gr

dσ and its phase shift φdσ = πnσ .
In the present paper, we limit our attention to the spin-degenerate case and assume that the

energy levels in the QD are equal for electrons with spin up and down (the Kondo effect in the
presence of magnetic fields has been investigated in our recent paper, in which the energy levels
for spin up and down are separated by the Zeeman energy [28]). As a consequence, we have
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p↑ = p↓ = p, z↑ = z↓, and thus λ(2)
↑ = λ

(2)
↓ = λ(2), n↑ = n↓ = nd , and G↑ = G↓. Moreover,

it is easily found from equation (11) that d = 0 in the limit of infinite Coulomb interaction
U → ∞. This means that no doubly occupied state is permitted due to the infinite on-site
Coulomb repulsion interaction. Then the set of self-consistent equations can be simplified to
four equations.

3. Comparison with other slave-boson formulations

It is well known that there is a different version of the finite-U slave-boson formulation, which
has been extensively utilized to investigate the single-impurity Anderson model by means of
the diagrammatic NCA, even in the presence of magnetic fields [31]. Nevertheless, we argue
in the following that, within the slave-boson mean-field framework, this formulation is just not
appropriate for this problem.

Two auxiliary Bose fields have been induced in the usual slave-boson formulation: b the
empty-state boson operator and dσσ̄ the doubly occupied-state boson operator, which has the
property dσσ̄ = −dσ̄σ . Only one constraint∑

σ

c
†
d,σ cd,σ + b†b + d

†
σ σ̄ dσ σ̄ = 1 (22)

is needed to guarantee that the transformed boson–fermion mixed Hamiltonian equation (23)
is equivalent to the original one, equation (1). Following reference [31], the transformed
Hamiltonian equation (1) can be written as

Heff =
∑
σ,kα

εkα,σ c
†
kα,σ

ckα,σ +
∑
σ

εdσ c
†
d,σ cd,σ + (U + εdσ + εdσ̄ )d

†
σ σ̄ dσ σ̄

+
∑
σ,kα

(Vαc
†
kα,σ

b†cd,σ + H.c.) +
∑
σ,kα

(Vαc
†
kα,σ

c
†
d,σ̄ dσ σ̄ + H.c.)

+ λ

(∑
σ

c
†
d,σ cd,σ + b†b + d

†
σ σ̄ dσ σ̄ − 1

)
(23)

in which λ is the Lagrange multiplier which induces the constraint (22). Within the SBMFT
these slave-boson fields can be replaced with their corresponding expectation values. Note that
dσσ̄ = −dσ̄σ = d . Just as was done in the above section, the corresponding self-consistent
equations are given from the constraint (22) and the equation of motion of the slave-boson
operators. Here, in order to obtain those statistical expectations utilized in the self-consistent
equations, we have to solve the 2 × 2 matrix correlation GF G<

dσ (t, t
′):

G<
dσ (t, t

′) = i

( 〈c†
d,σ cd,σ 〉 〈cd,σ̄ cd,σ 〉

〈c†
d,σ c

†
d,σ̄ 〉 〈cd,σ̄ c†

d,σ̄ 〉

)
. (24)

By employing the Dyson equation, we can easily obtain the Fourier transform of the correlation
GF G<

dσ (t, t
′), for the non-interacting Hamiltonian (23), as

G<
dσ (ω) = i"u




f (ω − µL) + f (ω − µR)

(ω − ε̃dσ )2 + ("u)2
0

0
f (ω + µL) + f (ω + µR)

(ω + ε̃dσ )2 + ("u)2


 (25)

with "u = "(|b|2 + |d|2) and ε̃dσ = εdσ + λ.
Finally, following the same procedure as was used above, from the KR formulation, one

can write the set of self-consistent equations in terms of the correlation GF G<
dσ (ω) as

1

π i

∫
dω [G<

dσ (ω)]11 + |b|2 + |d|2 = 0 (26)
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1

π i

∫
dω [G<

dσ (ω)]11(ω − ε̃dσ ) +
1

π i

∫
dω [G<

dσ (ω)]22(ω + ε̃dσ ) + λ(|b|2 + |d|2) = 0 (27)

1

π i

∫
dω [G<

dσ (ω)]11(ω − ε̃dσ ) +
1

π i

∫
dω [G<

dσ (ω)]22(ω + ε̃dσ )

+ 4(U + εdσ + εdσ̄ + λ)(|b|2 + |d|2) = 0. (28)

Therefore, one can solve the set of equations (26)–(28) to define the three unknown parameters
b, d, and λ and then determine properties of transport through QD under finite external
voltage. Unfortunately, this set of equations is not solvable mathematically because these
equations contain the two parameters b and d only in the combined form |b|2 + |d|2. Thus,
from these equations one cannot obtain a rational expectation value for the doubly occupied
slave-boson operator d . In addition, in the specialU → ∞ limit, these equations cannot reduce
to those originally derived from the infinite-U formulation (Coleman’s formulation; see the
following) [24, 25]. These are two severe objections to the application of this formulation at
the mean-field level.

In contrast, the KR formulation is especially designed for the purpose of application of
the slave-boson mean-field method, and can give qualitatively rational parameters e2, p2, and
d2 for the whole range of the energy level εd . In figure 1(b) we show the expectation values of
the slave-boson operators e2, p2, and d2 calculated from our formulation versus the discrete
energy level of the QD with U = 7. When the energy level of the QD is far below the Fermi
energy of the two leads (we assume µL = µR = 0 in the calculation), electrons can be filled
into both of the two energy levels εd and εd +U of the QD, which naturally means that d2 = 1
and e2 = p2 = 0. As the energy level εd increases, d2 is evidently reduced, and the singly
occupied-state number p2 starts to increase and we obtain a maximum at the symmetric point
εd = −U/2. Subsequently, with further increase of the energy level, there are no electrons
residing simultaneously in the two energy levels, and d2 tends to zero. Also p2 begins to
reduce. Finally, when the energy level is far away from the Fermi energy of the two leads
again, there are no electrons occupying the QD, i.e., e2 = 1 and p2 = d2 = 0. It is clear that
our numerical results for these expectation values of slave-boson operators meet the physical
requirements very well.

On the other hand, we should point out that our results in the limit of U → ∞ are also
different from those derived from the infinite-U Coleman formulation [23]. The Coleman
Hamiltonian can be obtained by setting dσσ̄ = d = 0 in the effective Hamiltonian (23).
Clearly, the set of self-consistent equations can be readily derived and the correlation GF
is equal to [G<

dσ (ω)]11 with "|b|2 instead of "u in equation (25). Likewise, from the KR
formulation for the case of U → ∞, the set of equations derived in the above section can
determine the unknown parameters e2, p2, λ(1), and λ(2), and then provide a definition of the
occupation number nσ and conductance G of QD. For the sake of comparison, we calculate
them numerically and plot them in figure 2 as functions of the discrete energy level of the
QD. We can explicitly establish, from our formulation, that the conductance shows strong
enhancement at εd � −0.5 and reaches unity at about εd ≈ −2; these findings show good
consistency with experimental results [3,4,8]. In contrast, from Coleman’s formulation at the
mean-field level, one finds that the Coulomb interaction does not enhance the conductance until
εd ≈ −2.5. In view of these findings, we can state that the SBMFT in the KR formulation
describes the Kondo-type transport through QD more precisely than the old version of the
SBMFT. In our opinion, both approaches are actually variational methods. So, the present
SBMFT formulation describing the Kondo-type transport through QD better than the previous
version of the SBMFT can be understood on the basis of the fact that there are two slave-
boson-operator-related parameters e2 and p2 (d2 = 0 in the limit U → ∞) in the present
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Figure 1. (a) The linear conductance at absolute zero temperature and the electron occupation
number in the QD, (b) the slave-boson-operator occupied-state numbers e2, p2, and d2, and (c) the
Lagrange multipliers λ(1) and λ(2) versus the dot energy level for U = 7. Solid dots and stars
in (a) denote the experimental [8] and NRG calculation results, respectively. " is chosen as the
energy unit.
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Figure 2. The linear conductance through the QD and the electron occupation number in the QD
at zero temperature calculated by applying the present SBMFT with U = ∞ (solid lines) and
U = 0 (dashed lines) as functions of the dot energy level. For comparison, the corresponding
results obtained by means of the Coleman formulation are also plotted.

SBMFT, while there is only one parameter, b, in Coleman’s formulation. In the following, we
apply this new approach to investigate the effects of Coulomb correlation on the linear and
non-linear transport through QD.

4. Calculations and discussion

In this section, we employ the newly developed SBMFT to numerically investigate the Kondo
correlation effect on linear and non-linear transport through the QD for a special case: that
with the finite on-site Coulomb interaction U = 7. The calculation is performed only at zero
temperature in the present paper. For simplicity, we assume that the QD system is symmetric
and choose the mixing constant " as the energy unit.

4.1. Linear transport

Using equation (19), we can calculate the linear conductance G of the QD at absolute zero
temperature. Figure 1 depicts: the calculated conductance G and the electron occupation
number n per spin (a); the expectation values of slave-boson operators e2, p2, and d2 (b); and
the Lagrange multipliersλ(1), λ(2) (c) as functions of the gate voltage, the discrete energy level of
the QD with U = 7. For comparison, the experimental data (from figure 5(b) in reference [8])
and the results of the NRG calculation for zero temperature are also plotted, respectively, as
solid circles and stars in figure 1(a). The numerical results give a good explanation for the
measured and NRG conductances in the symmetric case −1.2U � εd � 0.2U . However, there
is a big discrepancy between them in the extremely asymmetric regimes, where the conductance
computed from the present model shows a sudden drop to zero, which is at variance with the
gradual decrease of the experimental and the NRG results. We think that this behaviour can be
attributed to the limitation of zero temperature. Extension of the present approach from zero
temperature to finite temperature will be our next project. In figure 2, we plot the conductance
and occupation number per spin versus energy level for two special cases, U = ∞ and U = 0.
The Coulomb correlation can significantly affect transport through the QD as demonstrated in
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this figure. It is easily observed from figure 2 that only when the chemical potentials of the
two leads are in alignment with the energy level of the QD is the resonance condition satisfied
and does the conductance reach unity at εd = 0 (because of assumption of µL = µR = 0 in
the calculation). Nevertheless, the Coulomb correlation can greatly enhance the conductance
of the QD in the Kondo regime.

The Anderson model has three different regimes parametrized by the energy level εd : the
Kondo regime with εd � −0.5; the mixed-valence regime with −0.5 � εd � 0; and the
empty-orbital regime with εd � 0, each of which has different transport properties. In the
empty-orbital regime, there are few electrons in the QD. The empty-state number e2 is larger
than p2 and d2 as observed from figure 1(b). As the energy level εd decreases, e2 evidently
reduces and the singly occupied-state number p2 starts to increase and reaches a maximum at
the symmetric point εd = −U/2, which corresponds to an odd number of electrons residing in
the QD with n = 0.5 and the most pronounced Kondo effect, G = 2e2/h. Subsequently, with
further decrease of the energy level, lots of electrons reside in the QD and e2 tends to zero.
Also p2 begins to reduce. But the doubly occupied-state number d2 has a remarkable value
and finally an even number of electrons enter into the QD with n = 1, which weakens the
Coulomb correlation effect. However, since the infinite Coulomb interaction can prevent there
being a doubly occupied state in the QD, there is always a significant Kondo correlation effect
throughout the whole Kondo regime as shown in figure 2. Moreover, we can clearly observe
from figure 1(a) that the calculated conductance G agrees well with the experimental results
for the non-Kondo regimes with εd � −0.5. Meanwhile, figure 2 demonstrates that there are
great differences between the conductances G derived from the present SBMFT and from the
Coleman formulation in the non-Kondo regimes. In consequence, these results show that this
especially designed SBMFT provides a good tool for investigating linear transport through
QD over a very wide range of the energy level εd near symmetric point. We can qualitatively
conclude, from numerical calculations for different strengths of the on-site Coulomb interaction
U , that the validity limitation of the present approach is about −1.2U � εd � 0.2U , even
though only results for the particular system parameter U = 7 are presented in this paper.
Note that the validity regime is rather wide, including both Kondo and non-Kondo regimes, in
contrast to the usual finding that the slave-boson mean-field approximation completely fails in
describing charge fluctuation.

Figure 3 clearly reveals the dependence on the Coulomb interaction U of the conductance
G in these different regimes. It is evident from figure 3 that the Coulomb interaction sub-
stantially enhances the conductance through the QD in the Kondo regime εd = −2 and a
saturation value is reached after about U = 8. In contrast, the Coulomb correlation slightly
suppresses the conductance in the other two regimes. Furthermore, the inset in figure 3 shows
that the conductance declines more rapidly in the mixed-valence regime than in the empty
regime. In the mixed-valence regime, and very close to the Kondo regime, the conductance
G has a maximum value at about U = 1, then it decreases with the increase of the Coulomb
interaction.

4.2. Nonlinear transport

In this subsection, we concentrate on the non-equilibrium transport through QD. For the sake
of simplicity, the assumption that there is a symmetric voltage drop, µL = −µR = eV/2,
through the whole system is made in our calculation. Then, considering symmetric coupling
for two tunnel barriers, the differential conductance is symmetric under bias reversal. Since
it is known that SBMFT has some problems in describing dynamical properties, non-linear
results far from equilibrium have to be treated with more caution.
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Figure 3. The Coulomb interaction dependence of the linear conductance at zero temperature
through the QD. Inset: linear conductances for εd = −0.5, εd = 0 (the mixed-valence regime),
and εd = 1 (the empty-orbital regime).

Figure 4 illustrates the bias-voltage-dependent differential conductance dI/dV for the QD
with U = 7 in the Kondo regimes with εd = −2, −1, and −0.5. For these specially chosen
parameters, the Kondo temperatures TK are about 0.14, 0.44, and 1.12, respectively (the
exact Bethe ansatz gives the following dynamic energy scale: TK = U

√
β exp(−π/β)/2π ,

β = −2U"/εd(U + εd)). The inset in figure 4 depicts the calculated differential conductance
versus external bias voltage in the non-Kondo regimes with εd = 1, 1.5, and 1.8. The
differential conductance has a sharp peak at zero bias voltage V = 0 in the Kondo regime.
For these energy levels close to the Kondo regime, the differential conductance demonstrates
a broadened zero-bias peak (note the big difference of the scales, i.e., the Kondo temperatures,
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Figure 4. The zero-temperature differential conductance dI/dV of the QD with U = 7 as a
function of the external voltage at several different discrete energy levels, εd = −2, −1, and −0.5.
The inset shows these results at εd = 1, 1.5, and 1.8. A pronounced zero-bias maximum is observed
in the Kondo regime with εd = −2, while a flat minimum appears in the empty-orbital regimes
with εd = 1.5 and 1.8.
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in figure 4). This zero-bias maximum in the differential conductance has been derived from
previous theoretical calculations and observed in experiments [3,4]. In contrast, the differential
conductance predicts a weak zero-bias minimum in the non-Kondo regime with εd = 1.5
and a slightly more obvious non-zero-bias maximum for εd = 1.8. This prediction is in
qualitative agreement with the modified SOPT investigation [16]. Note that the slave-boson
mean-field approximation used in the present method is believed to be reliable for describing
spin fluctuations (Kondo regime) but completely fails in describing charge fluctuations because
quantum and thermal fluctuations are not included at the mean-field level. In fact, the high-
frequency features in the DOS, i.e., charge-fluctuation peaks, play especially important roles
in defining non-linear transport. Consequently, the validity of the application of the SBMFT
in studying non-linear transport is not clear. Of course the KR slave-boson formulation
provides a scheme for including fluctuations upon the mean-field solution [35], but this is
beyond the scope of the present paper and will be included in a future project. In the present
investigation, we perform our calculation of the differential conductance with bias voltages
up to several multiples of the Kondo temperature TK for the Kondo system, in which regime
spin fluctuations make a primary contribution to transport. Therefore, we can comment that
the results in figure 4 for the Kondo system properly describe the I–V characteristic of the
QD. Meanwhile, for the non-Kondo systems, we limit our non-equilibrium calculation to low
voltages V < Min(|εd |, |U + εd |), in which range the SBMFT is believed to approximately
recover the main features of the DOS. Thus some qualitative features of the non-linear transport
through QD in non-Kondo systems can be deduced from the present investigation, which can
serve to furnish a deeper understanding of the properties of transport through QD. For example,
both the present SBMFT and the modified SOPT calculations [16] for εd = 1.5 and 1.8 show a
non-zero-bias maximum in the differential conductance, although there is an obvious difference
as regards magnitude. In fact, there have been many experiment-based arguments regarding the
zero-bias minimum in the differential conductance in non-Kondo regimes [2–4]. Our results
suggest that only when the energy levels are far enough away from the Kondo regime does
the zero-bias minimum appear, and that further away from the Kondo regime there emerges a
more obvious peak, but a weak zero-bias maximum still remains for εd = 1. This seems to
provide a basis for discussion of the zero-bias minimum in the differential conductance.

5. Conclusions

In this paper, we have studied the properties of linear and non-linear transport through QD by
means of an alternative SBMFT on the basis of the saddle-point approximation of the slave-
boson functional integral method, which is correct for arbitrary Coulomb correlation and
naturally fulfils the Friedel–Langreth sum rule. The great advantage of the present method is
that the correlation Hamiltonian for QD can be transformed to one without Coulomb correlation
by introducing several auxiliary Bose field operators and the well-developed tunnelling formula
for the non-interacting mesoscopic systems can be applied to investigate the transport through
QD, which can avoid the difficulty as regards how to treat both the Coulomb interaction and
the tunnelling between the QD and the two leads simultaneously. On the other hand, the NCA
limits one to the case of the infinite Coulomb interaction. The EOM method underestimates
the Kondo correlation effect at low temperature due to the decoupling approximation. The
modified SOPT uses an equilibrium DOS to explore the non-equilibrium transport through QD.

We also provide a comparison between the KR formulation used in the present paper and
the usual slave-boson formulation at the same slave-boson mean-field level. The theoretical
derivation in section 3 reveals that the usual finite-U slave-boson formulation does not allow
one to apply the slave-boson mean-field approximation. Moreover, a further comparison
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between the results obtained from our SBMFT and those derived from Coleman’s formulation
is performed, which suggests that the present SBMFT is a more precise theoretical tool for
studying Kondo-type transport through QD.

In our numerical investigation, the zero-temperature linear conductance G versus the
energy level is in good agreement with the experiment data. In the different regimes, the
conductance G has different dependences on the Coulomb interaction. Our evaluation also
displays a pronounced zero-bias enhancement of the differential conductance in the Kondo
regime in comparison with the results obtained without the Coulomb correlation. In addition,
a flat zero-bias minimum is predicted in our calculation for a non-Kondo system far enough
away from the Kondo regime, which qualitatively agrees with previous studies and provides a
basis for discussion of experiments.

Furthermore, the other great advantage of the new SBMFT is that it is very easy to extend
to more complicated systems with strong Coulomb correlation effects. For example, it is
straightforward to apply this tool to study Kondo-type transport through QD in the presence of
an external magnetic field [28] or for multi-levels—and even the Kondo correlation coherent
transport in hybrid mesoscopic systems (N–QD–S and S–QD–S) and the QD-modified AB
ring systems. Studies of these systems are in progress.
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[22] Costi T A, Hewson A C and Zlatić V 1994 J. Phys.: Condens. Matter 6 2519
[23] Coleman P 1984 Phys. Rev. B 29 3035
[24] Aono T et al 1998 J. Phys. Soc. Japan 67 1860

Georges A and Meir Y 1999 Phys. Rev. Lett. 82 3508
[25] Aguado R and Langreth D C 2000 Phys. Rev. Lett. 85 1946
[26] Schwab P and Raimondi R 1999 Phys. Rev. B 59 1637
[27] Clerk A A and Ambegaokar V 1999 Preprint cond-mat/9910201
[28] Dong B and Lei X L 2001 Phys. Rev. B 63 235306
[29] Kotliar G and Ruckenstein A E 1986 Phys. Rev. Lett. 57 1362
[30] Hasegawa H 1990 Phys. Rev. B 41 9168

Dorin V and Schlottmann P 1993 Phys. Rev. B 47 5095
[31] Pruschke Th and Grewe N 1989 Z. Phys. B 74 439

Schiller A and Zevin V 1993 Phys. Rev. B 47 9297
Kang K and Min B I 1996 Phys. Rev. B 54 1645

[32] Langreth D C 1976 Linear and Nonlinear Electron Transport in Solids (Nato ASI Series B, vol 17) ed J T Devreese
and V E Van Doren (New York: Plenum)

[33] Meir Y and Wingreen N S 1992 Phys. Rev. Lett. 68 2512
[34] Langreth D C 1966 Phys. Rev. 150 516
[35] Rasul J W and Li T 1988 J. Phys. C: Solid State Phys. 21 5119

Lavagna M 1990 Phys. Rev. B 41 142


